سفارش تبلیغ
صبا ویژن
حکمت به درون انباشته از خوراک وارد نمی شود . [پیامبر خدا صلی الله علیه و آله]
وبلاگ تخصصی فیزیک
پیوندها
وبلاگ شخصی محمدعلی مقامی
* مطالب علمی *
ایساتیس
آقاشیر
.: شهر عشق :.
جملات زیبا
تعقل و تفکر
دکتر رحمت سخنی
بیگانه ، دختری در میان مردمان
تا ریشه هست، جوانه باید زد...
اس ام اس عاشقانه
خاطرات خاشعات
اس ام اس سرکاری اس ام اس خنده دار و اس ام اس طنز
وسوسه عقل
پرهیزکار عاشق است !
فروش و تعمیر موبایل در استان یزد
آموزش
وبلاگ تخصصی کامپیوتر
هک و ترفند
فروش و تعمیر موبایل در استان یزد
انجمن فیزیک پژوهش سرای بشرویه
عاشقان خدا فراری و گریزان به سوی عشق و حق®
وبلاگ عشق و محبت ( اقا افشین)
باید زیست
دست نوشته های دو میوه خوشمزه
در دل نهفته ها
روزگاران(حتما یه سری بهش بزن ضرر نمی کنی)
فقط برای ادد لیستم...سند تو ال
تجربه های مدیریت
سولات تخصصی امتحان دکترا دانشگاه آزاد
سولات تخصصی امتحان دکترا دانشگاه آزاد
ارزانترین و بزرگترین مرکز سوالات آزمون دکترا
عکس و اس ام اس عشقولانه
دانلود نرم افزار های روز دنیا
شاهرخ
مکانیک هوافضا اخترفیزیک
مکانیک ، هوافضا ،اخترفیزیک
وبلاگ تخصصی فیزیک و اختر فیزیک
وبلاگ تخصصی فیزیک جامدات
همه با هم برای از بین نرفتن فرهنگ ایرانی
انتخاب
فیزیک و واقعیت
ترجمه متون کوتاه انگلیسی
دنیای بیکران فیزیک
آهنگ وبلاگ

تاریخچة مختصر فیزیک

ماقبل تاریخ

همانطور که متقدمین از روی تجربه و امتحان به خواص باطنی پاره‌ای از اجسام بی‌پرده و از ترکیب مواد به وسایل مختلف (تشویه، تکلیس، تقطیر و غیره) مواد شیمیائی بدست آورده و برای علمای شیمی جدید مایه‌ای درست کرده‌اند، همینطور هم تحقیق در خواص فیزیکی اجسام از مسائل تازه نیست و از قدیم الایام انسان درصدد کشف آنها بوده و از توجه به تغییرات و خواص ظاهری به بعضی اصول و قواعد فیزیکی پی برده و فیزیک جدید در حقیقت مولود توجهات و تحقیقات متقدمین می‌باشد.

مثلاً‌ تالس که قدیمی‌ترین و معروفترین حکمای سبعه است و تقریباً در شش قرن قبل از میلاد می‌زیسته محقق ساخت که از مالش کهربا خاصیتی در آن به ظهور می‌رسد که اجسام سبک را جذب می‌کند، همچنین فیثاغورث حکیم و ریاضی‌دان معروف یونانی و شاگردهایش به پاره‌ای مسائل و قضایای صوت پی برده بودند. (این دانشمند اول کسی است که زمین را متحرک می‌دانست).

ارسطو نیز در چهار قرن قبل از میلاد تئوریهای دقیقی در باب کائنات الجو (از قبیل جرثقیل، منجنق، میزان‌الغلظة و پیچ (پیچ ارشمیدس Vis sans pin) را اختراع نموده.

البته موضوع محاصرة سیراکوز را به توسط رومیان و سه سال مقاومت اهالی آن شهر را به وسیله نقشه‌های ارشمیدس اغلب در تاریخ دیده‌ایم. گویند یکی از وسایلی که ارشمیدس برای دفاع از وطن خود بکار می‌برد این بود که به وسیله آئینه‌های مقعر اشعه آفتاب را جمع کرده به جانب کشتیهای دشمن منعکس می‌ساخت وبدین‌وسیله آنها را آتش می‌زد.

همچنین قانونی را که راجع به «اجسام مرتمسة در مایعات» وضع کرده از قوانینی است که به وسیلة اتفاق غریبی به کشف آن نائل شده است:

هیرن پادشاه سیراکوز به زرگری دستور داده بود که تاجی از طلای خالص برای او بسازد، زرگر در ساختن تاجی تقلب کرده مقداری نقره با آن ممزوج کرده و نزد هیرن بود. اتفاقاً پادشاه به زرگر ظنین شد و برای اطمینان خاطر خود ارشمیدس را بطلبید و او را مأمور تحقیق خلوص یا عدم خلوص تاج نمود. ارشمیدس مدتها در این باب فکر می‌کرد ولی راه‌حلی به نظرش نمی‌رسید تا روزی که به حمام رفته بود در خزینه آب احساس کرد که دست‌ها و پاهایش سبکتر به نظرش می‌آید.

این مسئله کوچک روزنة امیدی برای او پیدا و بدین‌وسیله به کشف حقیقت بزرگی نایل گردید. معروف است که در اثر حالت غیرطبیعی که از اکتشاف مزبور برای ارشمیدس دست داده بود با همان حال برهنگی از حمام خارج و دوان دوان به جانب خانه سلطان روان گردید و فریاد می‌زد: Eureka! Eureka یعنی یافتم، یافتم . در واقع هم وسیله کشف تقلب زرگر را از روی کشف قانون کلی «تعیین وزن خالص مخصوص اجسام نسبت به آب» پیدا کرده بود.

قانونی را که ارشمیدس به وسیلة فوق موفق به کشف آن گردیده موسوم به D’Archimede Principle و به قرار ذیل می‌باشد:

بر کلیه اجسام مرتمسه در سیال (مایعات و گازها) فشاری از تحت به فوق وارد می‌آید که مقدار آن مساوی است با وزن سیال تغییر مکان یافته.

بالاخره بطلیموس (قرن دوم میلادی) منجم و ریاضی‌دان یونانی نیز تحقیقات عمیقی راجع به نور کرده و کتاب نفیسی در این مبحث از خود باقی گذارده است.

پس از بطلمیوس تحقیقات فیزیکی تا قرن 13 میلادی متوقف شد و حتی می‌توان گفت که رو به انحطاط گذارد. فقط عده‌ای از قبیل جابر و محمدبن موسی در این رشته زحماتی کشیده و اطلاعات قابل توجهی کسب کرده بودند.

قرون وسطی

اما تحصیل فیزیک در کشورهای غربی از قرون سیزدهم شروع می‌شود علمای معروف این علم در این قرن عبارتند از: راجر بیکن و آلبرت کبیر.

در این عصر دو اختراع مهم بعمل آمد:

یکی آئینه‌های صیقلی و دیگری عینک (Salvino Degli-Armati)

در قرن چهاردهم استعمال ))قطب نما تعمیم یافت. قرن پانزدهم راجع به ««فیزیک تقریباً چیز مهمی ندارد.

بالعکس در قرن شانزدهم مخصوصاً مباحث ثقل و نور و مغناطیس رو به کمال رفته‌اند. در این زمان فراسکاتور (ایتالیائی) قانون ترکیب قوه، را وضع کرد،‌ Gardon ریاضیات را با فیزیک مربوط ساخت، Moralyeus عمل زجاجیه چشم را به واسطة آثار عدسیها به مورد تجربه گذارد.

جانسن ))میکروسکپ را اختراع «1590» و روبرت ««نورمن انگلیسی میل مغناطیسی را تعیین نمود. بالاخره ژیلبرت اولین تجارت علمی الکتریکی و مغناطیسی را در کتاب معروف خود (Magnete)تدوین و منتشر ساخت.

فیزیک جدید

پایة فیزیک جدید در قرن هفدهم به توسط گالیله گذارده می‌شود؛ این ))دانشمند شهیر ایتالیائی متولد شهر پیزا رفته بود اتفاقاً چشمش به قندیلی می‌افتد که به سقف آویزان بود و آهسته نوسان می‌کرد چون خوب متوجه شد دید: نوسانات که رفته رفته از وسعت خود می‌کاستند زمانشان پیوسته تغییر ناپذیر می‌ماند _ بدین طریق قانون متحدالزمان بودن «Lsoc hronisme » نوسانات کوچک پاندول را کشف و بعد هم بلافاصله مورد استعمال آن برای تنظیم ساعتهای دیواری از نظرش خطور کرد.

دماسنج، ترازوی آبی و دوربین نجومی از اختراعات و اصول ««دینامیک جدید و عده‌ای از قوانین نقل از کشفیات اومی‌باشد.گالیله نه تنها فیزیکدان«« معروفی بوده بلکه در ««ریاضیات و نجوم مقامی بس ارجمند داشته. این دانشمند درسال 1609 اولین دوربین نجومی را در شهر ونیز بنا نهاد و به وسیلة آن حرکت ماه را بدور محور خود مشاهده کرد.

رصدهای دقیق گالیله او را به سلسله هیئت کپرنیک هدایت نمود و به عکس نظر به قدما که زمین را مرکز عالم سماوی می‌دانستند ثابت کرد که مرکز عالم شمسی آفتاب است نه زمین. بیان این نظریه در آن زمان در ایتالیا که به منزلة کفر و زندقه محسوب می‌شد و بخصوص دربار رم با این نظر بشدت مخالفت کرده و گالیله را وادار کردند سوگند یاد کند دیگر به اظهار چنین نظریه‌ای زبان نگشاید‌، گالیله نیز خواهی نخواهی قبول کرد ولی در سال (1632) در مراجعت به فلورانس کتابی تدوین و در آن جمیع ادله و براهین خود را در موضوع سلسلة هیئت مزبور بیان نمود.

باری دانشمند ایتالیائی برای صرف اظهار حقیقت اواخر عمر را بطور نیمه اسیر و شدیداً تحت نظر انگیزیسیون می‌زیسته تا اینکه بالاخره در سال (1642) زندگانی را بدرود و خود را از شر دشمنان علم و حقیقت آسوده ساخت.

اگر چه مخترع دماسنج گالیله می‌باشد ولی نقطه ذوب یخ را برای صفردماسنج (Hooke) قرار داد و ثبوت نقطه جوش آن را Halley تعیین کرد. بالاخره دماسنجی که صعود منظم درجات حرارت را نشان دهد به توسط Renaldini ساخته شد.

دکارت قوانین انکسار و تئوری رنگین کمان را بنا نهاد. توریچلی میزان الهوا را ساخت که پس از او پاسکال آن را برای اندازه‌گیری ارتفاعات بکار برد. تحقیقات و تجسساتی که پاسکال در تعادل مایعات کرد او را به اختراع منگنه آبی راهنما شد.

در همین دوره آکادمی دل سیمانتو Academie Del cimento که لئوپلد دومدیسی در فلورانس تشکیل داده بود کمک زیادی به پیشرفت شاخه های گوناگون فیزیک نمود.

چندی بعد در فرانسه نیروی جاذبه را اندازه گرفتند و مقدار (G) تصحیح شد (81/9متر) مجدداً اسحاق نیوتن بعد از شنیدن این خبر به خیال اول خود رجوع نموده و آن را موضوع حساب قرارداد، گویند در اواخر همین که دید نتیجه موافق پیش‌بینی اوست از فرط شعف نتوانسته محاسبه را به اتمام رساند.

اسحاق نیوتن به واسطه استدلال رفته رفته به کشف این قانون کلی نایل شد: هر دو ذره مادی یکدیگر را به نسبت معکوس مجذور فاصله و مقدار جرمشان جذب می‌کنند.

خلاصه این عالم شهیر به واسطه اکتشافات و اختراعات خود یک روح جدید به فیزیک (بخصوص مبحث نور) بخشید. حلقه‌های رنگین (Anneaux colrees) و تجزیه نور بالون اصلیه آن از اکتشافات و تلسکوپ آئینه‌دار از اختراعات او است.

رمر (Ronmer) سرعت نور را اندازه گرفت و ماریت (فرانسوی) و بویل (Boyle) (انگلیسی) قانون فشار گاز را وضع کردند.در درجه حرارت ثابت حجم هر بخار یا گاز با فشار ی که بر آن وارد می‌آید نسبت معکوس دارد .

بویل ماشین تخلیه هوا را که Otto de Cueriche قاضی عدلیه شهر ماگدبورگ اختراع کرده بود تکمیل نمود. بالاخره اولین طرح ماشین بخار به توسط Papin ریخته شد.

اگر چه قرن هجدهم برای فیزیک بدرخشندگی قرن هفدهم نمی‌باشد ولی به هرحال آن را قرن بی‌ثمری هم نمی‌توان نامید.

در این قرن صوت بر روی مبانی محکم قرار گرفت: قانون تارهای مرتعشه را سوور طرح‌ریزی، و تایلر(Taylor) و (Bevnoulli) و Euler و (D’Alambtrt) تکمیل کردند.

دوفه جذب و دفع‌های الکتریکی را تحت تحقیق درآورد. دوفه می‌گوید:

""من در تجربیات خود قانونی یافتم که غالب مشکلات را حل می‌کند و تا درجه‌ای راه تاریک را روشن می‌سازد.

اجسام الکتریزه هر چیز غیر الکتریک را جذب می‌کنند و چون الکتریزه شدند دفع می‌نمایند و تا طلائی را بدوا لوله بلوری الکتریزه جذب می‌کند ولی فوراً دفع می‌نماید و تا هنگامی که ورقه طلا مجاور جسم دیگری نشود تا الکتریسته آن را خارج شود جذب نمی‌گردد.""

علاوه بر این دفع الکتریسته را به دو بخش نموده و می‌گوید:

اتفاق به من قانون عمومی‌تر و مهمتری آموخت و در الکتریسته تغییری کامل داد و آن این است که الکتریسته دو نوع است که من یکی را شیشه‌ای و دیگری را سقزی می‌نامم. خواص دو نوع الکتریسته مزبور این است که دو الکتریسته هم جنس یکدیگر را دفع و دو الکتریسته مختلف‌ همدیگر را جذب می‌نمایند. بلور‌، سنگ، سنگهای بزرگ، پشم و بسیاری از اجسام دیگر جزء نوع اول و کهربا، سقزها، ابریشم، نخ، کاغذ و غیره، جزء نوع دوم می‌باشند.

بعد قوانین و اصول کولن در خصوص جذب و دفع باعث شد که الکتریسته تحت محاسبات دقیق درآید.

گری ثابت کرد که بدن انسان را می‌توان الکتریزه نموده و دوفه در تجربه‌ای که همه تماشاچیان را مبهوت ساخت از بدن انسان جرقه درآورد. در سقف اطاق خود چند ریسمان ابریشمی می‌آویخت و در زیر آن چیزی گهواره مانند بسته در آن می‌خوابید خود را با میله کلفت بلوری الکتریزه می‌نمود و چون کسی دست به طرف او دراز می‌کرد از بدنش جرقه می‌جست اولین دفعه‌ای که دوفه این تجربه را نمود موجب تعجب بسیار شاگرد خود آبه نله که بعدها عالم مشهوری شد گردید. آبه نله می‌گوید «هیچوقت تعجبی را که از رویت جهش جرقه از بدن انسان برایم دست داد فراموش نمی‌کنم». خلاصه کارهای دوفه به تجسسات بی‌فایده علما خاتمه داد و از آن بعد الکتریسته وارد تاریخ تازه‌ای گردید.

Muschenbroech بطری لید را اختراع کرد (1743) و فرانکل شباهت تخلیه الکتریکی و صاعقه را نشان داد و در نتیجه برق گیر را برای حفظ ساختمان از برق اختراع نمود. تجربه گالوانی، ولتا را به اختراع پیل (1800) یعنی اساس الکتریسته جاری هدایت کرد و آن به قرار ذیل است:

ابتدا ستون فقرات ناحیه قطنی قورباغه‌ای را به دو قسمت کرده فوراً قسمت تحتانی را پوست می‌کنند بعد مابین دو عصب قطنی را که در طرفین ستون فقرات مثل رشته‌های سفیدی به نظر می‌آیند مفتولی از مس داخل می‌کنند سر دیگر مفتول وصل به مفتول دیگرست که از روی ساخته شده، هر وقت سر مفتول مسی را به اعصاب قطنی وسر مفتول رویی را به عضلات یکی از پای قورباغه وصل کنیم پاهای حیوان تا شده و تکان می‌خورد و هر دفعه که این دو مفتول را مجاور آن دو عضو کنیم این اثر تجدید می‌شود: این دو فلز «مس و روی) که به شکل قوسی ساخته شده‌اند برای جریان الکتریسته با بدن قورباغه تشکیل مدار می‌دهد.

باید دانست که مبحث مغناطیس الکتریک نتیجه اکتشافات دو عالم سابق الذکر یعنی ارستد و آمپر می‌باشد و همانطور که نام این دو دانشمند در یک موقع و یک عصر و یک مبحث برده شده همانطور هم جهات تشبیه در بسیاری از مباحث بین ایشان موجود بود: اولاً هر دو معاصر بوده تولدشان دو سال و وفاتشان یک سال با یکدیگر فرق داشته‌، ثانیاً آمپر فقط یکسال بیش از ارستد عمر کرده (عمر آمپر 75 و عمر ارتسد 74 سال است). ثالثاً هر دو در ابتدای تحصیل در نهایت فقر و پریشانی بسر می‌بردند و به خرج و کفالت اولیای دیگر و معلمین خود تحصیل را تکمیل کردند. رابعاً ارتسد در عنفوان جوانی اشعاری می‌سرود که چندان بی‌اهمیت نبوده آمپر نیز قطعات نظمی گفته که بعضی از آنها را آراگو و دیگران ضبط کرده‌اند. پنجم آمپر فیلسوف و حکیم نیز بوده و ارستد هم فلسفه و حکمت را نزد بزرگترین فلاسفه یعنی کانت آموخته و از این علم نیز بهره کافی داشت، ششم در باقی علوم نیز با یکدیگر شباهت داشته باشند.

فاراده (Faraday) ابتدا الکتریسیته را بنا نهاد، اصول گالوانوپلاستی را ژاکبی اهل پتروگرادواسپنسر اهل لندن وضع الکینگتن و روالتس را مطلاکاری بکار بردند.

گالوانوپلاستی صنعتی است که توسط تجزیه الکتریکی فلزات را در قالب مخصوص رسوب و مورق می‌کنند به نحوی که به جدار آن نچسبد و خود تشکیل شکل درونی قالب را بدهد. چنانکه سابقاً ذکر شد آمپر عمرش وفا نکرد و بعد از او به نتیجه رسیدند چنانکه آراگو قانون او را تکمیل کرده و تعمیم داد و گوس یکی از بزرگترین ستاره شناسان و ریاضی دانان آلمان اختراع تلگراف را تکمیل کرده و بعدها طبیعی‌دان آمریکائی موسوم به مرس الفبائی برای تلگراف درست کرده دستگاه آن را ساخت و دستگاه تلگرافی وی که به تلگراف مرس موسوم است هنوز در کلیه کشورهای معمول و مرسوم می‌باشد. آراگو علاوه بر تکمیل قوانین آمپر و ارستد اکتشافات و تحقیقات علمی دیگر هم کرده است منجم««له ثابت کرد که در عالم خلاء وجود ندارد بلکه در تمام فضای لایتناهی جسم سیال بسیار رقیقی موسوم به ««اتر موجود است که در همه جا حتی در خلل و فرج اجسام جای دارد و نیز اثبات نمود که اجسام نورانی دارای ارتعاشات بسیار سریعی هستند و اثر این ارتعاشات را با سرعت زیادی به ما منتقل می‌کند. پس از تکمیل تلگراف طولی نکشید که به واسطه تجربیات هرتز آلمانی در خصوص انتشار امواج الکتریکی باب جدیدی برای تلگراف بی‌سیم باز شد چنانکه پس از او مارکنی ایتالیائی و برانلی فرانسوی تجربیات او را تعقیب و بالاخره تلگراف بی‌سیم را عمل کردند. در اینجا بی‌مناسبت نیست که بطور اختصار شرحی از تاریخ تلگراف بیان شود. در قدیم الایام بین چینی‌ها و یونانی‌ها و رومی‌ها مرسوم بود که در اوقات جنگ برای اخبار یا استخبار از وضعیات دستجات قشون خود و یا دادن دستورات سوق الجیشی در بالای برجهای مخصوص ویا قلل تپسه‌ها و کوه‌ها آتش روشن می‌کردند و به وسیله حرکت دادن مشعل‌های بزرگ و علامات و اشاراتی که قبلاً قرارداد کرده بودند مطالب خود را به طرف مقابل می‌فهماندند. مردم گل مرسومشان این بود که از افراد خود به فواصل متساوی پست می‌گذارند و این مأموران کنایات در مورد قرارداد را فریاد کنان به پست‌ها می‌رساندند.

پس از هجوم و استیلای وحشیان و تا مدتی بعداز آن یعنی تا قرن شانزدهم این نوع علائم اخباری از بین رفت. از قرن شانزدهم به بعد مجدداً این ترتیب مخابره شروع شد و تا قرن هجدهم ادامه داشت در این قرن کلدشاپ مهندس و فیزیکدان فرانسوی یک دستگاه تلگراف هوائی اختراع کرد و اولین دفعه مجمع کنوانسیون آن را برای پیغام و اطلاع خبر فتح کننده اتریشی‌ها به کار برد. بالاخره پس از آنکه دامنه الکتریسته وسعت یافت، واسطة انتقال اخبار جریان الکتریسیته شد. اولین دستگاه تلگرافی دنیا در سال 1774م به توسط لزاژ فرانسوی در ژنو ساخته شد. هر دستگاه تلگراف (باسیم) شامل چهار قسمت است: اولاً یک منبع الکتریکی از قبیل پیل یا آکومولاتر، ثانیاً یک دستگاه ارسالی خبر که بتوان منبع الکتریک را به وسیله مفتول‌های فلزی (سیم) به پست مقابل مربوط ساخت بطوری که تلگرافچی بتواند با اراده خود جریان را قطع و وصل کند. ثالثاً‌ سیم، واسطة ارتباط و هادی جریان الکتریسیته دستگاه ارسال است به دستگاه ضبط. چهارمً‌ دستگاهی برای ضبط خبر که به توسط آلات مخصوص علامت و رموز را در روی نواری از کاغذ ثبت کند. سیمهای تلگرافی بر سه نوعند: هوائی،‌ زیرزمینی و زیرآبی سیمهای هوائی _ زیرزمینی و زیرآبی سیمهای هوائی _ چون مقاومت سیمهای مسی چندان زیاد نیست و ممکن است زود بزود گسیخته شود لهذا سیمهای هوائی را با آلیاژهای مسی می‌سازند این مفتولها به واسطه مقره‌های چینی به تیرهای فلزی یا چوبی ثابت و در هوا نگاه داشته شده است. سیمهای زیرزمینی _ مرکب است از چند مفتول مسی بهم پیچیده که از یک ورقه ضخیم گوتاپیرکا پوشیده و روی آنرا یک ورقه سرب کشیده‌اند. سیم‌های زیرزمینی و زیرآبی _ این نوع سیمها معمولاً مرکبند از یک دسته هفت‌تائی مفتول مسی متصل به هم که روی آن را با یک ورقه ضخیم از جسم عایقی پوشانده‌اند. این ورقه عایق از سیمهای فولادی مستور است و دور این مفتولها نوار مارپیچی شکل علفی (از جنس شاهدانه) الوده به قطران پیچیده‌اند.


کلمات کلیدی: فیزیک حالت جامد


نوشته شده توسط مهدی 86/4/6:: 6:29 عصر     |     () نظر

علم یک واژه عربی است که از ریشه علم به معنی آموزش مشتق شده است. در اصطلاح عامیانه ، این کلمه در مورد هر نوع آگاهی که فرد در مورد محیط و مسایل پیرامون خود کسب می کند، اطلاق می گردد. و لذا هرچه میزان آگاهی و معلومات او بیشتر باشد، او را عالمتر می دانند. به همین علت در قدیم به افرادی که در زمینه علوم مذهبی و قرآنی به درجات بالاتری نائل می شدند، علامه می گفتند. مانند علامه امینی که آثار بسیار گرانبهایی از وی بر جای مانده است.

پیدایش علم

آدمی تمایل دارد که هرچه را ممکن است بداند و بفهمد، زیرا کنجکاو زاده شده است. کنجکاوی انسان از کنجکاوی هر موجود زنده دیگر کاملتر و پایدارتر است. رضایت آدمی در فرو نشاندن این کنجکاوی ، همراه با توانایی او در به خاطر آوردن ، استدلال کردن و ارتباط دادن ، به پیدایش فرهنگ کامل ، و از جمله علم منجر شده است. بنابراین می توان گفت که از همان زمانی که انسان ، پای به این جهان گذاشته است، علم نیز به وجود آمده و با رشد فکری بشر ، علم تکامل یافته است.

برداشت غلط از علم!

معلومات انسان ، وقتی که در مسایل روزانه به کار روند، می توانند در لباسی که فرد میپوشد، خانه ای که در آن زندگی می کند، تاثیر کنند. روشهای مسافرت ، تفریحات ، آموزش و پرورش ، اعتقادات مذهبی ، قضاوتهای اخلاقی و حتی بقای ملی انسان به این معلومات بستگی دارد. اما باید توجه داشته باشیم که وظیفه خود علم به وجود آوردن کاربردهای آن نیست. علم مشتمل بر اصول و قوانین است. پزشکی و روشهای آن مرغوب کردن دانه های نباتی ، تلفن ، رادیو ، موشکها ، هواپیماها و بطور خلاصه چیزهایی که مستقل از این اصول و قوانین تکمیل می شوند، علم نیستند، بلکه محصولات مهندسی یا انقلاب تکنولوژیک هستند.

البته منظور آن نیست که گفته شود کاربردهای علم اهمیتی ندارند. واقع امر آن است که این کاربردها دنیای ما را عمیقاً تغییر دادهاند، بطوری که در بسیاری از موارد نمی توان بدون آنها زندگی خود را ، آن گونه که امروزه می گذرانیم، ادامه دهیم. علم و انقلاب تکنولوژیک هردو بخش بزرگی از کوشش های فرهنگی ، اقتصادی و سیاسی ملتها را در بر گرفته است، بطوریکه درک نکردن هر یک از آنها می تواند پیامدهای خنده آور یا حتی خطرناک به دنبال داشته باشد. اما برای بسیاری از مردم تفاوت میان هدف های علم و انقلاب تکنولوژیک روشن نیست.

کنجکاوی ، تنها عامل ایجاد علم

کنجکاوی ، یعنی میل شدید به دانستن ، از ویژگیهای ماده مرده نیست. همچنین از ویژگیهای انواع جاندارانی نیست که به زحمت می توانیم آنها را از موجودات زنده بپنداریم. بعنوان مثال ، درخت ، نمی تواند به محیط اطراف خود کنجکاوی نشان بدهد. اما از آغاز پیدایش حیات ، در بعضی از جانداران حرکت مستقل پیدا شد. به این ترتیب ، پیشرفت بزرگی برای در دست گرفتن محیط اطراف پدید آمد. جاندار متحرک دیگر لازم نبود که به انتظار غذا باشد، بلکه خود به دنبال آن می رفت. و این بدان معنی است که ماجرایی تازه در جهان آغاز شد و آن کنجکاوی بود.

انسان یک مافوق میمون است!

ممکن است لحظه ای پیش آید که جاندار از غذا سیر باشد و در همان لحظه خطری او را تهدید نکند. در این حالت جاندار یا مانند صدف به حالت بیحسی می رسد و یا مانند موجودات عالیتر ، غریزه ای قوی برای کشف محیط اطراف خود نشان دهد. این حالت را میتوان کنجکاوی بیهوده نام نهاد. که معمولا هوش را از روی آن داوری میکنند. سگ ، لحظه ای فراغت ، هر چیزی را بیهوده بو می کند و گوش هایش را به طرف صداهایی که ما نمی شنویم بر می گرداند.

به همین علت است که ما سگ را از گربه ، که در لحظه های فراغت به تیمار خود می پردازد یا به آرامی دراز می کشد و می خوابد ، باهوشتر می دانیم. هر چه مغز پیشرفته تر می باشد، کشش برای کشف ، افزونتر می شود. میمون از نظر کنجکاوی نمونه بارزی است. و لذا از این جهت و بسیار جهات دیگر می گویند که ، آدمی یک مافوق میمون است.

دلیل تقسیم علم به شاخه های مختلف

اگر بگوییم که علم و آدمی همیشه شادمانه باهم زیسته اند، کلام درستی است. ولی حقیقت امر این است که هر دو فقط در آغاز کار با دشواری روبه رو بودند. تا زمانی که علم قیاس باقی مانده بود، فلسفه طبیعی می توانست جزیی از فرهنگ عمومی هر تحصیلکرده باشد. ولی علم استقرایی کاری عظیم بود که به مشاهده و یادگیری و تحلیل نیاز داشت، و دیگر بازی آماتورها نبود. پیچیدگی علم در هر دهه افزونتر می شد. در طول قرون بعد از نیوتن هنوز ممکن بود که شخصی با استعداد بتواند از همه فرضیه های علمی آگاهی پیدا کند، اما در سال 1800 این کار غیر علمی بود.

با گذشت زمان معلوم شد که اگر دانشمندی بخواهد در زمینهای مطالعات مشروح ، انجام دهد، باید بیش از پیش خود را به بخشی از آن زمینه محدود کند. گسترش علم تخصص را ایجاب می کرد. با هر نفس دانشمند ، تخصص عمیق تر می شد. و لذا این مسئله باعث شد تا علم رفته رفته به شاخهای مختلف تقسیم گردد. بطوریکه با گسترش علم این شاخه را نیز گسترده تر می کردند.

عواقب ناخوشایند علم

در دهه 1960 ، احساس قوی دشمنی آشکار نسبت به علم در میان مردم و حتی تحصیلکرده های دانشگاهی پیدا شد. جامعه صنعتی ما مبتنی بر کشفیات علمی در قرون اخیر است و اکنون از عواقب جنبی نادلخواه موفقیت های آن به ستوه آمده است. فنون پیشرفته پزشکی افزایش بی رویه جمعیت را به دنبال آورده است.

صنایع شیمیایی و موتورهای درونسوز آب و هوای ما را آلوده کرده اند «آلودگی آب و هوا). نیاز روز افزون به مواد جدید انرژی شبب ویرانی و تهی شدن پوسته زمین شده است. تولید انواع سلاحهای مرگبار و بمب های اتمی بعنوان یک عامل اساسی ، حیات انسان را تهدید می کند. اما نباید تمام این گناهان را به گردن علم و دانشمندان بیندازیم. بلکه این مسایل علل مختلفی مانند استفاده نابجا و نادرست از علم دارد.


کلمات کلیدی: فیزیک حالت جامد


نوشته شده توسط مهدی 86/4/6:: 6:28 عصر     |     () نظر

وقتی هارمونیکهای مختلف ، تارهای مختلف ساز با هم به طور کامل کوک نمی‌شوند در داخل صوت موسیقی ناهنجاریهایی شنیده می‌شود که اختلاف جزئی با آهنگ اصلی دارد. این مساله در مباحث علمی تحت عنوان پدیده طنین مطرح است. در حالت کلی اکثر ناهنجاریهای صوتی که فرکانس ناخوشایند تولید می‌کنند به این پدیده مربوط می‌شود.

مفهوم طنین

اگر ارتعاشی ناهماهنگ باشد. افزون بر بلندی و ارتفاع یک خاصیت دیگر نیز دارد این زنگ صدای خاص یا طنین آن می‌باشد.

طنین چگونه بوجود می‌آید؟

اگر به جای دیاپازون ، سیرن ساده‌ای یعنی دیسک چرخانی را که دارای سوراخ‌هایی است و جریان هوا روی آنها دیده می‌شود، با افزایش فشار جریان هوا نوسانهای چگالی هوای پشت سوراخها را شدت می‌بخشیم و صوت با حفظ ارتفاعش بلندتر می‌شود. با افزودن به سرعت چرخش دیسک ، دوره قطع جریان هوا را کاهش می‌دهیم. صدا زیرتر می‌شود ولی بلندتر نمی‌شود.

می‌توانیم در دیسک دو ردیف یا بیشتر سوراخ کنیم و تعداد سوراخ‌های هر ردیف را متفاوت بگیریم. هر چه تعداد سوراخهای ردیفی زیادتر یعنی دوره قطع کوتاهتر باشد. صوت از دیدن جریان زیرتر است.

تفکیک صداها

هنگامی که سیرن به عنوان چشمه صوت باشد. ارتعاشهای دورهای و ناهماهنگ به دست می‌آید، ثپ ( پالس ) چگالی هوای جریان متناوب ناگهانی عوض می‌شود. از این رو صدای سیرن با اینکه صوت موسیقی است. ولی به صدای دیاپازدن شبیه نیست ، یعنی صوت سیرن را با ، دیاپازدن هم صدا کرده همین طور بلندی دو صوت را نیز می‌توان یکسان کرد.

با وجود این ، می‌توان صدای سیرن را از صدای دیاپازن با آسانی تمیز داد. از این رو اگر ارتعاشی ناهماهنگ باشد. افزودن بر بلندی و ارتفاع یک خاصیت دیگر نیز دارد. این رنگ صدای خاص ، یا طنین آن است. به سبب طنینهای مختلف ، می‌توان صداهای صحبت ، سوترفی ، تار پیانو ـ تار ویولون ، فلوت ، آکاردئون و غیره را از هم تمیز داد. حتی اگر این صداها ارتفاع و بلندی یکسان داشته باشند. ما صدای اشخاص را طنین صدایشان تشخیص می‌دهیم.

خواص تشخیص ارتعاش طنین صوت

نوسان نگاشت‌های تولید شده با پیانو و قره ‌نی از نت یکسان یعنی صوت هم ارتفاعی متناظر با دوره 0.01s را نشان می‌دهد. نوسان نگاشت‌ها نشان می‌دهند که مد هر دو نوسان یکی است. ولی در شکل نت خیلی فرق دارند. و در نتیجه طنین هماهنگ متفاوت دارند. هر دو صوت عبارتند از نوسانهای هماهنگ ( تنها ) یکسان ، اما تنها ( اصلی و ابر تنها ) در این صوتها با دانه‌ها و فازهای متفاوت نشان داده شده‌اند. بنابراین ، باید پیدا کنیم که در طنین خاصی چه عواملی دخالت دارند.

عوامل دخیل در طنین

- دامنه ارتعاش:

برای گوش انسان فقط بسامد و دامنه ، تنهای صوت اساسی‌اند ، یعنی طنین صوت را طیف هماهنگهایش تعیین می‌کند.

- فاز ارتعاش:

تغییر وضع تک تک تنها با زمان یعنی جابه جاییهای فاز تنها ، با اینکه شکل ارتعاش برآیند را به مقدار زیادی عوض می‌کنند ولی گوش آنها را احساس نمی‌کند. بنابراین ، صوت یکسانی را می توان با شکلهای ارتعاشی به کلی متفاوت ، شنید. فقط مهم این است که طیف ، یعنی بسامد و دامنه تنهای مؤلفه ، بدون تغییر بمانند.


کلمات کلیدی: ترمو دینامیک


نوشته شده توسط مهدی 86/4/6:: 6:27 عصر     |     () نظر

فیزیک از واژه یونانی physikos به معنی « طبیعی» و physis به معنی « طبیعت» گرفته شده است. پس فیزیک علم طبیعت است به عبارتی در عرصه علم پدیده های طبیعی را بررسی می کند.

علم فیزیک

علم فیزیک رفتار و اثر متقابل ماده و نیرو را مطالعه می کند.مفاهیم بنیادی پدیده های طبیعی تحت عنوان قوانین فیزیک مطرح می شوند.این قوانین به توسط علوم ریاضی فرمول بندی می شوند به طوریکه قوانین فیزیک و روابط ریاضی با هم در توافق بوده و مکمل هم هستند.و دو تایی قادرند کلیه پدیده های فیزیکی را توصیف نمایند.

تاریخچه علم فیزیک

- از روزگاران باستان مردم سعی می کردند رفتار ماده را بفهمند. و بدانند که:چرا مواد مختلف خواص متفاوت دارند؟ چرا برخی مواد سنگینترند؟ و... همچنین جهان ، تشکیل زمین و رفتار اجرام آسمانی مانند ماه و خورشید برای همه معما بود.

- قبل از ارسطو تحقیقاتی که مربوط به فیزیک می شد ، بیشتر در زمینه نجوم صورت می گرفت. علت آن در این بود که لااقل بعضی از مسائل نجوم معین و محدود بود و به آسانی امکان داشت که آنها را از مسائل فیزیک جدا کنند. در برابر سوالاتی که پیش می آمد گاه خرافاتی درست می کردند، گاه تئوریهایی پیشنهاد می شد که بیشتر آنها نادرست بود.

این تئوریها اغلب برگرفته ازعبارتهای فلسفی بودند و هرگز بوسیله تجربه و آزمایش تحقیق نمی شدند. و بعضی مواقع نیز جوابهایی داده می شد که لااقل بصورت اجمالی و با تقریب کافی بنظر می رسید.

- جهان به دو قسمت تقسیم می شد: جهان تحت فلک قمر و مابقی جهان.مسائل فیزیکی اغلب مربوط به جهان زیر ماه بود و مسائل نجومی مربوط به ماه و آن طرف ماه نیز« فیزیک ارسطو» یا بطور صحیحتر« فیزیک مشائی» بود که در چند کتاب مانند« فیزیک»،« آسمان»،« آثار جوی»،« مکانیک»،« کون و فساد» و حتی« مابعدالطبیعه» دیده می شد.

- تا اینکه در قرن 17 ، گالیله برای اولین باربه منظور قانونی کردن تئوریهای فیزیک ، از آزمایش استفاده کرد. او تئوریها را فرمولبندی کرد و چندین نتیجه از دینامیک و اینرسی را با موفقیت آزمایش کرد. پس از گالیله ، اسحاق نیوتن ، قوانین معروف خود «قوانین حرکت نیوتن) را ارائه کرد که به خوبی با تجربه سازگار بودند.

- بدین ترتیب فیزیک جایگاه علمی و عملی خود را یافت و روزبه روز پیشرفت کرد، مباحث آن گسترده تر شد، تا آنجا که قوانین آن از ریزترین ابعاد اتمی تا وسیعترین ابعاد نجومی را شامل می شود. اکنون فیزیک مانند زنجیری محکم با بقیه علوم مرتبط است و هنوز هم به سرعت در حال گسترش و پیشرفت می باشد.

نقش فیزیک در زندگی

- هر فرد بزرگ یا کوچک، درس خوانده یا بیسواد ، شاغل یا بیکار خواه ناخواه با فیزیک زندگی می کند. عمل دیدن و شنیدن ، عکس العمل در برابراتفاقات ، حفظ تعادل در راه رفتن و... نمونه هایی از امور عادی ولی در عین حال وابسته به فیزیک می باشند.

- پدیده های جالب طبیعی نظیر رنگین کمان ، سراب ، رعد و برق ، گرفتگی ماه و خورشید و... همه با فیزیک توجیه می شوند.

- برنامه های رادیو ، تلویزیون ، ماهواره ، اینترنت ، تلفن و... با کمک فیزیک مخابره می شوند.

- با این نمونه های ساده ، می توان تصور کرد که اگر فیزیک نبود و اگر روزی قوانین فیزیک بر جهان حاکم نباشند، زندگی و ارتباطات مردم شدیدا دچار مشکل می شود.

فیزیک و سایر علوم

- فیزیک، دینامیک و ساختار درونی اتم ها را توصیف می کند. و از آنجا که همه مواد شامل اتم هستند، پس هر علمی که در ارتباط با ماده باشد، با فیزیک نیز مرتبط خواهد بود. علومی نظیر: شیمی ، زیست شناسی ، زمین شناسی ، پزشکی ، دندانپزشکی ، داروسازی ، دامپزشکی ، فیزیولوژی ، رادیولوژی ، مهندسی مکانیک ، برق ، الکترونیک ، مهندسی معدن ، معماری ، کشاورزی و ... .

- فیزیک درصنعت ، معدن ، دریانوردی ، هوانوردی و... نیزکاربرد فراوان دارد. اینکه ابزار کار هر شغلی و هر علمی مبتنی براستفاده ازقوانین و مواد فیزیکی است، نقش اساسی فیزیک درسایر علوم و رشته ها را نمایان می کند. علاوه برآن استفاده روزافزون از اشعه لیزر در جراحی ها و دندانپزشکی، رادیوگرافی با اشعه ایکس در رادیولوژی ، جوشکاری صنعتی و... نمونه هایی از کاربردهای بیشمار فیزیک در علوم دیگرمی باشند.

فیزیک و آینده

با این روند رو به رشدی که علم فیزیک در کنار سایر علوم دارد، می توان امیدوار بود که در آینده به چراها و چگونگی های عالم طبیعت پاسخ داده شود و این دنیای فیزیک سکوی پرتاب به عالم متا فیزیک باشد.

در آینده شاید فیزیک بتواند ...

- رسیدن به سرعت نور و فراتر از آن را مقدور سازد.

- مثالهای عجیب نسبیت را عملی کند.

- معمای مثلث برمودا را حل کند.

- واقعیت یوفوها( بشقاب پرنده ها) را مشخص کند.

- به راز وجود یا عدم وجود هوش فرا زمینی واقف شود. و...


کلمات کلیدی: فیزیک حالت جامد


نوشته شده توسط مهدی 86/4/6:: 6:26 عصر     |     () نظر

فیزیک محاسباتی همانطوری ‌که از نامش بر می‌آید ، شامل محاسباتی است که در فیزیک انجام می‌گیرد. می‌دانیم که روش حل عددی در تمام مسائل فیزیک به پاسخ منجر نمی‌شود. بعبارت دیگر ، موارد معدودی وجود دارد که با توسل به روشهای تحلیلی قابل حل هستند و لذا در موارد دیگر باید از روشهای عددی و تقریبی استفاده کنیم. هدف فیزیک محاسباتی تشریح و توضیح این روشها می‌باشد.

به عنوان مثال ، فرض کنید با یک خط‌کش طول میزی را اندازه بگیریم، طبیعی است که بخاطر خطای اندازه‌گیری اگر 10 بار طول میز اندازه‌گیری شود، در هر بار اندازه‌گیری مقداری که با مقادیر قبلی تفاوت جزئی دارد، حاصل خواهد شد. بنابراین برای تعیین طول واقعی نیز با بیشترین دقت باید به روشهای آماری متوسل شویم.

توزیع‌ های آماری

معمولا اگر داده‌های تجربی حاصل از آزمایشها را بر روی یک نمودار پیاده کنیم، در این‌صورت ، بر اساس نمودار حاصل ، این داده‌ها از توزیع بخصوصی تبعیت خواهند کرد. این توزیع‌ها را اصطلاحا توزیع‌های آماری می‌گویند که معروفترین آنها عبارتند از:

توزیع دوجمله‌ای

فرض کنید تاسی را n بار پرتاب کنیم و هدف ما آمدن عدد 6 باشد. در این‌صورت ، این عمل را "آزمون" و تعداد دفعاتی را که عدد 6 ظاهر شده است، "موفقیت" و مواردی را که اعداد دیگر ظاهر شده است، "عدم موفقیت" می‌گویند. بنابراین ، اگر موفقیت‌ها بر یکدیگر تاثیر نداشته و مستقل از یکدیگر باشند و نیز ترتیب مهم نباشد، در اینصورت ، داده‌ها از توابع توزیع دوجمله‌ای پیروی می‌کنند.

توزیع پواسون

اگر چنانچه تعداد حالات با تعداد آزمونها به سمت بینهایت میل کند و نیز احتمال موفقیت (p) به سمت صفر میل کند، در اینصورت ، داده‌ها از تابع پواسون پیروی می‌کنند. شرط عملی برای استفاده از توزیع پواسون این است که تعداد آزمونها بیشتر از 30 بار بوده و نیز احتمال موفقیت کمتر از 0.05 باشد. لازم به ذکر است که این دو شرط باید بطور همزمان برقرار باشند. این معیار عملی از روی هم گذاشتن توابع توزیع و گزینش بهترین انتخاب و از روی آن تعیین N و P ویژه حاصل می‌گردد.

توزیع گاوسی

توزیع گاوسی یا نرمال یک نقش اساسی در تمام علوم بازی می‌کند. خطاهای اندازه‌گیری‌ معمولا به‌وسیله این توزیع داده می‌شود. توزیع گاوسی اغلب یک تقریب بسیار خوبی از توزیع‌های موجود می‌باشد. دیدیم که اگر N بیشتر شده و احتمال موفقیت (P) کوچک باشد، در این صورت توزیع پواسون حاکم است. حال اگر تعداد آزمونها (N) به سمت اعداد خیلی بزرگتر میل کند، بطوری که حاصلضرب NP به سمت 20 میل کند، در این صورت شکل تابع توزیع حالت تقارن پیدا می‌کند، بگونه‌ای که می‌توان آن را با یک توزیع پیوسته جایگزین کرد. این توزیع پیوسته همان توزیع گاوسی است.

برازش

اغلب اتفاق می‌افتد که نموداری در اختیار داریم و می‌خواهیم مدل فیزیکی را که بر این نمودار حاکم است، پیدا کنیم. فرض کنید در یک حرکت سقوط آزاد اجسام ، زمان و ارتفاع سقوط را اندازه‌گیری کرده و نتایج حاصل بر روی یک نمودار پیاده شده است. حال با توجه به اینکه معادله حرکت سقوط آزاد اجسام را می‌دانیم و می‌خواهیم با استفاده از این نمودار مقدار g ، شتاب جاذبه ثقل ، را تعیین کنیم. بنابراین ، در چنین مواردی از روش برازش که ترجمه واژه لاتین (fitting) می‌باشد، استفاده می‌کنیم. در این حالت ابتدا باید توزیع حاکم بر این داده‌ها را بشناسیم که اغلب در چنین مواردی توزیع حاکم ، توزیع گاوسی است.

حل دستگاه معادلات

معمولا در مسائل عددی به مواردی برخورد می‌کنیم که یک دستگاه n معادله n مجهولی ظاهر می‌گردد. در این صورت ، برای حل این معادلات به طریق عددی از روش‌های مختلفی استفاده می‌شود. یکی از این روشها ، حل دستگاه معادلات به روش حذف گوسی (روش کاهش یا حذف گاوسی) می‌باشد. البته روشهای دیگری مانند حل دستگاه معادلات به روش محورگیری و موارد دیگر نیز وجود دارد که بسته به نوع مسئله مورد استفاده ، از آن روش استفاده می‌گردد.

انتگرالگیری عددی

اگر مسئله‌ای وجود داشته باشد که در آن انتگرالهای دوگانه یا سه‌گانه ظاهر شود، البته با اندکی زحمت می‌توان این انتگرالها را به صورت تحلیلی حل کرد. اما این موارد چندان زیاد نیستند و در اغلب موارد به انتگرالهای چندگانه‌ای برخورد می‌کنیم که حل آنها به روش تحلیلی تقریبا غیرممکن است. در چنین مواردی از روش انتگرالگیری عددی استفاده می‌شود. روشهایی که در حل انتگرالها به روش عددی مورد استفاده قرار می‌گیرند، شامل روش ذوزنقه‌ای ، روش سیمپسون یا سهمی ‌و روشهای دیگر است.

البته خطای مربوط به این روشها متفاوت بوده و بسته به نوع مسئله‌ای که انتگرال در آن ظاهر شده است، روش مناسب را انتخاب می‌کنند. تقریبا دقیق‌ترین روشها ، انتگرالگیری به روش مونت کارلو می‌باشد، که امروزه در اکثر موارد از این روش استفاده می‌گردد. مزیت این روش به روشهای دیگر در این است که اولا محدودیتی وجود ندارد و انتگرال هر چندگانه که باشد، با این روش حل می‌شود. در ثانی ، این روش نسبت به روشهای دیگر کم هزینه‌تر است.

شبیه سازی

آنچه امروزه بیشتر مورد توجه قرار دارد، شبیه سازی سیستمهای فیزیکی است. به عنوان ابتدایی‌ترین و ساده‌ترین مورد می‌توان به حرکت آونگ ساده اشاره کرد. در این حالت یک برنامه کامپیوتری نوشته می‌شود، بگونه‌ای که حرکت آونگ را بر روی صفحه کامپیوتر نمایش دهد. در ضمن کلیه محدودیت‌های فیزیکی حاکم بر حرکت نیز اعمال می‌شود. در واقع مثل اینکه بصورت تجربی آونگی را به نوسان در می‌آوریم و دوره تناوب و سایر پارامترهای دقیق در مسئله را تعیین می‌کنیم. البته این مثال خیلی ابتدایی و ساده است.

لازم به ذکر است ، شبیه سازی به روش مونت کارلو به دو صورت می‌تواند مطرح باشد. حالت اول عبارت از شبیه سازی با رسم تصویر متوالی است. درست مانند مثالی که در بالا اشاره کردیم. حالت دوم شبیه سازی آماری یا احتمالی است. بعنوان مثال ، انواع اندرکنش‌های فوتون با ماده را که به پدیده‌های مختلفی مانند اثر فوتوالکتریک ، اثر کامپتون ، پدیده تولید زوج و ... منجر می‌گردد، با این روش می‌توان مورد مطالعه قرار داد.


کلمات کلیدی: فیزیک حالت جامد


نوشته شده توسط مهدی 86/4/6:: 6:26 عصر     |     () نظر
<   <<   41   42   43   44   45   >>   >